Video Stream

hugging face
pyodide
video
Image processing with Pillow and Scikit Image
Author
Published

January 7, 2024

Introduction

This app takes a videostream from your web cam and applies different filters supplied by Pillow and Scikit Image.

You can change the model in the sidebar. The left plot shows how much time it takes to run the model on the image. The right plot shows the time since the last image was processed.

This app is heavily inspired by a similar realtime image processing app by Whitphx.

Star

App

This app runs entirely in the browser via Pyodide and panel convert.

Open in a new window | Open in Hugging Face Spaces

Code

Show
import base64
import io
import time

import numpy as np
import param
import PIL
import skimage

from PIL import Image, ImageFilter
from skimage import data, filters
from skimage.color.adapt_rgb import adapt_rgb, each_channel
from skimage.draw import rectangle
from skimage.exposure import rescale_intensity
from skimage.feature import Cascade

import panel as pn
import sys



HEIGHT = 600 # pixels
WIDTH = 600 # pixels
TIMEOUT = 500 # milliseconds

if sys.platform == 'emscripten':
    TIMEOUT=100

CSS="""
.mdc-drawer {background: var(--light-bg-color) !important;}"""

pn.extension(raw_css=[CSS], sizing_mode="stretch_width")


class ImageModel(pn.viewable.Viewer):
    """Base class for image models."""

    def __init__(self, **params):
        super().__init__(**params)

        with param.edit_constant(self):
            self.name = self.__class__.name.replace("Model", "")
        self.view = self.create_view()

    def __panel__(self):
        return self.view

    def apply(self, image: str, height: int = HEIGHT, width: int = WIDTH) -> str:
        """Transforms a base64 encoded jpg image to a base64 encoded jpg BytesIO object"""
        raise NotImplementedError()

    def create_view(self):
        """Creates a view of the parameters of the transform to enable the user to configure them"""
        return pn.Param(self, name=self.name)

    def transform(self, image):
        """Transforms the image"""
        raise NotImplementedError()


class PILImageModel(ImageModel):
    """Base class for PIL image models"""

    @staticmethod
    def to_pil_img(value: str, height=HEIGHT, width=WIDTH):
        """Converts a base64 jpeg image string to a PIL.Image"""
        encoded_data = value.split(",")[1]
        base64_decoded = base64.b64decode(encoded_data)
        image = Image.open(io.BytesIO(base64_decoded))
        image.draft("RGB", (height, width))
        return image

    @staticmethod
    def from_pil_img(image: Image):
        """Converts a PIL.Image to a base64 encoded JPG BytesIO object"""
        buff = io.BytesIO()
        image.save(buff, format="JPEG")
        return buff

    def apply(self, image: str, height: int = HEIGHT, width: int = WIDTH) -> io.BytesIO:
        pil_img = self.to_pil_img(image, height=height, width=width)

        transformed_image = self.transform(pil_img)

        return self.from_pil_img(transformed_image)

    def transform(self, image: PIL.Image) -> PIL.Image:
        """Transforms the PIL.Image image"""
        raise NotImplementedError()


class NumpyImageModel(ImageModel):
    """Base class for np.ndarray image models"""

    @staticmethod
    def to_np_ndarray(image: str, height=HEIGHT, width=WIDTH) -> np.ndarray:
        """Converts a base64 encoded jpeg string to a np.ndarray"""
        pil_img = PILImageModel.to_pil_img(image, height=height, width=width)
        return np.array(pil_img)

    @staticmethod
    def from_np_ndarray(image: np.ndarray) -> io.BytesIO:
        """Converts np.ndarray jpeg image to a jpeg BytesIO instance"""
        if image.dtype == np.dtype("float64"):
            image = (image * 255).astype(np.uint8)
        pil_img = PIL.Image.fromarray(image)
        return PILImageModel.from_pil_img(pil_img)

    def apply(self, image: str, height: int = HEIGHT, width: int = WIDTH) -> io.BytesIO:
        np_array = self.to_np_ndarray(image, height=height, width=width)

        transformed_image = self.transform(np_array)

        return self.from_np_ndarray(transformed_image)

    def transform(self, image: np.ndarray) -> np.ndarray:
        """Transforms the np.array image"""
        raise NotImplementedError()


class Timer(pn.viewable.Viewer):
    """Helper Component used to show duration trends"""

    _trends = param.Dict()

    def __init__(self, **params):
        super().__init__()

        self.last_updates = {}
        self._trends = {}

        self._layout = pn.Row(**params)

    def time_it(self, name, func, *args, **kwargs):
        """Measures the duration of the execution of the func function and reports it under the
        name specified"""
        start = time.time()
        result = func(*args, **kwargs)
        end = time.time()
        duration = round(end - start, 2)
        self._report(name=name, duration=duration)
        return result

    def inc_it(self, name):
        """Measures the duration since the last time inc_it was called and reports it under the
        specified name"""
        start = self.last_updates.get(name, time.time())
        end = time.time()
        duration = round(end - start, 2)
        self._report(name=name, duration=duration)
        self.last_updates[name] = end

    def _report(self, name, duration):
        if not name in self._trends:
            self._trends[name] = pn.indicators.Trend(
                name=name,
                data={"x": [1], "y": [duration]},
                height=100,
                width=150,
                sizing_mode="fixed",
            )
            self.param.trigger("_trends")
        else:
            trend = self._trends[name]
            next_x = max(trend.data["x"]) + 1
            trend.stream({"x": [next_x], "y": [duration]}, rollover=10)

    @param.depends("_trends")
    def _panel(self):
        self._layout[:] = list(self._trends.values())
        return self._layout

    def __panel__(self):
        return pn.panel(self._panel)


def to_instance(value, **params):
    """Converts the value to an instance

    Args:
        value: A param.Parameterized class or instance

    Returns:
        An instance of the param.Parameterized class
    """
    if isinstance(value, param.Parameterized):
        value.param.update(**params)
        return value
    return value(**params)


class VideoStreamInterface(pn.viewable.Viewer):
    """An easy to use interface for a VideoStream and a set of transforms"""

    video_stream = param.ClassSelector(
        class_=pn.widgets.VideoStream, constant=True, doc="The source VideoStream", allow_refs=False,
    )

    height = param.Integer(
        default=HEIGHT,
        bounds=(10, 2000),
        step=10,
        doc="""The height of the image converted and shown""",
    )
    width = param.Integer(
        default=WIDTH,
        bounds=(10, 2000),
        step=10,
        doc="""The width of the image converted and shown""",
    )

    model = param.Selector(doc="The currently selected model")

    def __init__(
        self,
        models,
        timeout=TIMEOUT,
        paused=False,
        **params,
    ):
        super().__init__(
            video_stream=pn.widgets.VideoStream(
                name="Video Stream",
                timeout=timeout,
                paused=paused,
                height=0,
                width=0,
                visible=False,
                format="jpeg",
            ),
            **params,
        )
        self.image = pn.pane.JPG(
            height=self.height, width=self.width, sizing_mode="fixed"
        )
        self._updating = False
        models = [to_instance(model) for model in models]
        self.param.model.objects = models
        self.model = models[0]
        self.timer = Timer(sizing_mode="stretch_width")
        self.settings = self._create_settings()
        self._panel = self._create_panel()

    def _create_settings(self):
        return pn.Column(
            pn.Param(
                self.video_stream,
                parameters=["timeout", "paused"],
                widgets={
                    "timeout": {
                        "widget_type": pn.widgets.IntSlider,
                        "start": 10,
                        "end": 2000,
                        "step": 10,
                    }
                },
            ),
            self.timer,
            pn.Param(self, parameters=["height", "width"], name="Image"),
            pn.Param(
                self,
                parameters=["model"],
                expand_button=False,
                expand=False,
                widgets={
                    "model": {
                        "widget_type": pn.widgets.RadioButtonGroup,
                        "orientation": "vertical",
                        "button_type": "primary",
                        "button_style": "outline"
                    }
                },
                name="Model",
            ),
            self._get_transform,
        )

    def _create_panel(self):
        return pn.Row(
            self.video_stream,
            pn.layout.HSpacer(),
            self.image,
            pn.layout.HSpacer(),
            sizing_mode="stretch_width",
            align="center",
        )

    @param.depends("height", "width", watch=True)
    def _update_height_width(self):
        self.image.height = self.height
        self.image.width = self.width

    @param.depends("model")
    def _get_transform(self):
        # Hack: returning self.transform stops working after browsing the transforms for a while
        return self.model.view

    def __panel__(self):
        return self._panel

    @param.depends("video_stream.value", watch=True)
    def _handle_stream(self):
        if self._updating:
            return

        self._updating = True
        if self.model and self.video_stream.value:
            value = self.video_stream.value
            try:
                image = self.timer.time_it(
                    name="Model",
                    func=self.model.apply,
                    image=value,
                    height=self.height,
                    width=self.width,
                )
                self.image.object = image
            except PIL.UnidentifiedImageError:
                print("unidentified image")

            self.timer.inc_it("Last Update")
        self._updating = False


class GaussianBlurModel(PILImageModel):
    """Gaussian Blur Model

    https://pillow.readthedocs.io/en/stable/reference/ImageFilter.html#PIL.ImageFilter.GaussianBlur
    """

    radius = param.Integer(default=0, bounds=(0, 10))

    def transform(self, image: Image):
        return image.filter(ImageFilter.GaussianBlur(radius=self.radius))


class GrayscaleModel(NumpyImageModel):
    """GrayScale Model

    https://scikit-image.org/docs/0.15.x/auto_examples/color_exposure/plot_rgb_to_gray.html
    """

    def transform(self, image: np.ndarray):
        grayscale = skimage.color.rgb2gray(image[:, :, :3])
        return skimage.color.gray2rgb(grayscale)


class SobelModel(NumpyImageModel):
    """Sobel Model

    https://scikit-image.org/docs/0.15.x/auto_examples/color_exposure/plot_adapt_rgb.html
    """
    def transform(self, image):


        @adapt_rgb(each_channel)
        def sobel_each(image):
            return filters.sobel(image)

        return rescale_intensity(1 - sobel_each(image))


@pn.cache()
def get_detector():
    """Returns the Cascade detector"""
    trained_file = data.lbp_frontal_face_cascade_filename()
    return Cascade(trained_file)


class FaceDetectionModel(NumpyImageModel):
    """Face detection using a cascade classifier.

    https://scikit-image.org/docs/0.15.x/auto_examples/applications/plot_face_detection.html
    """

    scale_factor = param.Number(default=1.4, bounds=(1.0, 2.0), step=0.1)
    step_ratio = param.Integer(default=1, bounds=(1, 10))
    size_x = param.Range(default=(60, 322), bounds=(10, 500))
    size_y = param.Range(default=(60, 322), bounds=(10, 500))

    def transform(self, image):
        detector = get_detector()
        detected = detector.detect_multi_scale(
            img=image,
            scale_factor=self.scale_factor,
            step_ratio=self.step_ratio,
            min_size=(self.size_x[0], self.size_y[0]),
            max_size=(self.size_x[1], self.size_y[1]),
        )

        for patch in detected:
            rrr, ccc = rectangle(
                start=(patch["r"], patch["c"]),
                extent=(patch["height"], patch["width"]),
                shape=image.shape[:2],
            )
            image[rrr, ccc, 0] = 200

        return image


component = VideoStreamInterface(
    models=[
        GaussianBlurModel,
        GrayscaleModel,
        SobelModel,
        FaceDetectionModel,
    ]
)
pn.Row(pn.Row(component.settings, max_width=300), component)


pn.template.MaterialTemplate(
    site="Awesome Panel",
    title="VideoStream with ScikitImage",
    sidebar=[component.settings],
    main=[component],
).servable()

Download (right-click, save-as)

Gif

Mp4

Png

Social

Please share on social media. Thanks.

Back to top